122,500 research outputs found

    Compact reflection nebulae, a transit phase of evolution from post-AGB to planetary nebulae

    Get PDF
    In a search of the optical counter-part of candidates of protoplanetary nebulae on the plates of UK Schmidt, ESO Schmidt, and POSS, five compact reflection nebulae associated with post-AGB stars were found. A simplified model (dust shell is spherical symmetric, expansion velocity of dust shell is constant, Q(sub sca)(lambda) is isotropic, and the dust grain properties are uniform) is used to estimate the visible condition of the dust shell due to the scattering of the core star's light. Under certain conditions the compact reflection nebulae can be seen of the POSS or ESO/SRC survey plates

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions

    Get PDF
    For quantum fields on a curved spacetime with an Euclidean section, we derive a general expression for the stress energy tensor two-point function in terms of the effective action. The renormalized two-point function is given in terms of the second variation of the Mellin transform of the trace of the heat kernel for the quantum fields. For systems for which a spectral decomposition of the wave opearator is possible, we give an exact expression for this two-point function. Explicit examples of the variance to the mean ratio Δ=(2)/(2)\Delta' = (-^2)/(^2) of the vacuum energy density ρ\rho of a massless scalar field are computed for the spatial topologies of Rd×S1R^d\times S^1 and S3S^3, with results of Δ(Rd×S1)=(d+1)(d+2)/2\Delta'(R^d\times S^1) =(d+1)(d+2)/2, and Δ(S3)=111\Delta'(S^3) = 111 respectively. The large variance signifies the importance of quantum fluctuations and has important implications for the validity of semiclassical gravity theories at sub-Planckian scales. The method presented here can facilitate the calculation of stress-energy fluctuations for quantum fields useful for the analysis of fluctuation effects and critical phenomena in problems ranging from atom optics and mesoscopic physics to early universe and black hole physics.Comment: Uses revte

    Object Segmentation in Images using EEG Signals

    Get PDF
    This paper explores the potential of brain-computer interfaces in segmenting objects from images. Our approach is centered around designing an effective method for displaying the image parts to the users such that they generate measurable brain reactions. When an image region, specifically a block of pixels, is displayed we estimate the probability of the block containing the object of interest using a score based on EEG activity. After several such blocks are displayed, the resulting probability map is binarized and combined with the GrabCut algorithm to segment the image into object and background regions. This study shows that BCI and simple EEG analysis are useful in locating object boundaries in images.Comment: This is a preprint version prior to submission for peer-review of the paper accepted to the 22nd ACM International Conference on Multimedia (November 3-7, 2014, Orlando, Florida, USA) for the High Risk High Reward session. 10 page

    Bicritical and tetracritical phenomena and scaling properties of the SO(5) theory

    Full text link
    By large scale Monte Carlo simulations it is shown that the stable fixed point of the SO(5) theory is either bicritical or tetracritical depending on the effective interaction between the antiferromagnetism and superconductivity orders. There are no fluctuation-induced first-order transitions suggested by epsilon expansions. Bicritical and tetracritical scaling functions are derived for the first time and critical exponents are evaluated with high accuracy. Suggestions on experiments are given.Comment: 11 pages, 8 postscript figures, Revtex, revised versio
    corecore